首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13589篇
  免费   1304篇
  国内免费   1143篇
  2023年   403篇
  2022年   360篇
  2021年   717篇
  2020年   759篇
  2019年   940篇
  2018年   659篇
  2017年   480篇
  2016年   542篇
  2015年   547篇
  2014年   687篇
  2013年   988篇
  2012年   493篇
  2011年   569篇
  2010年   432篇
  2009年   543篇
  2008年   552篇
  2007年   576篇
  2006年   525篇
  2005年   525篇
  2004年   443篇
  2003年   420篇
  2002年   344篇
  2001年   227篇
  2000年   216篇
  1999年   204篇
  1998年   177篇
  1997年   162篇
  1996年   160篇
  1995年   188篇
  1994年   164篇
  1993年   118篇
  1992年   112篇
  1991年   127篇
  1990年   97篇
  1989年   75篇
  1987年   79篇
  1986年   78篇
  1985年   126篇
  1984年   128篇
  1983年   86篇
  1982年   113篇
  1981年   106篇
  1980年   97篇
  1979年   83篇
  1978年   80篇
  1977年   85篇
  1976年   78篇
  1975年   81篇
  1974年   79篇
  1973年   74篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
21.
The incidence of thyroid cancer is increasing in recent years worldwide, but the underlying mechanisms await further exploration. We utilized the bioinformatic analysis to discover that Immortalization up‐regulated protein (IMUP) could be a potential oncogene in the papillary thyroid cancer (PTC). We verified this finding in several databases and locally validated cohorts. Clinicopathological features analyses showed that high expression of IMUP is positively related to malignant clinicopathological features in PTC. Braf‐like PTC patients with higher IMUP expression had shorter disease‐free survival. The biological function of IMUP in PTC cell lines (KTC‐1 and TPC‐1) was investigated using small interfering RNA. Our results showed that silencing IMUP suppresses proliferation, migration and invasion while inducing apoptosis in PTC cell lines. Changes of the expression of apoptosis‐related molecules were identified by real‐time quantitative polymerase chain reaction and Western blotting. We also found that YAP1 and TAZ, the critical effectors in the Hippo pathway, were down‐regulated when the IMUP is silenced. Rescue experiments showed that overexpression of YAP1 reverses the tumour inhibitory effect caused by IMUP knockdown. Our study demonstrated that IMUP has an oncogenic function in PTC and might be a new target gene in the treatment of PTC.  相似文献   
22.
Estimation of chitin deposition in the pupal and adult cuticles of adult Drosophila melanogaster during the pupal period is described. The timing of the periods of chitin deposition is compared with that deduced by previous workers using electron microscopy. The hypothesis that lethalcryptocephal mutant homozygotes are unable to evert their cephalic complexes at pupation because of excess chitin deposition is examined. The data obtained show no evidence that the mutation has any effect on chitin deposition.  相似文献   
23.
The flavonoids of five Geranium, fourteen Erodium and four Monsonia species were studied. Quercetin was the most common aglycone with lesse  相似文献   
24.
The mouse is a valuable model organism for biomedical research. Here, we established a comprehensive spectral library and the data-independent acquisition–based quantitative proteome maps for 41 mouse organs, including some rarely reported organs such as the cornea, retina, and nine paired organs. The mouse spectral library contained 178,304 peptides from 12,320 proteins, including 1678 proteins not reported in previous mouse spectral libraries. Our data suggested that organs from the nervous system and immune system expressed the most distinct proteome compared with other organs. We also found characteristic protein expression of immune-privileged organs, which may help understanding possible immune rejection after organ transplantation. Each tissue type expressed characteristic high-abundance proteins related to its physiological functions. We also uncovered some tissue-specific proteins which have not been reported previously. The testis expressed highest number of tissue-specific proteins. By comparison of nine paired organs including kidneys, testes, and adrenal glands, we found left organs exhibited higher levels of antioxidant enzymes. We also observed expression asymmetry for proteins related to the apoptotic process, tumor suppression, and organ functions between the left and right sides. This study provides a comprehensive spectral library and a quantitative proteome resource for mouse studies.  相似文献   
25.
Osteosarcoma (OS) is a type of malignant primary bone cancer, which is highly aggressive and occurs more commonly in children and adolescents. Thus, novel potential drugs and therapeutic methods are urgently needed. In the present study, we aimed to elucidate the effects and mechanism of melatonin on OS cells to provide a potential treatment strategy for OS. The cell survival rate, cell viability, proliferation, migration, invasion and metastasis were examined by trypan blue assay, MTT, colony formation, wound healing, transwell invasion and attachment/detachment assay, respectively. The expression of relevant lncRNAs in OS cells was determined by real-time qPCR analysis. The functional roles of lncRNA JPX in OS cells were further examined by gain and loss of function assays. The protein expression was measured by western blot assay. Melatonin inhibited the cell viability, proliferation, migration, invasion and metastasis of OS cells (Saos-2, MG63 and U2OS) in a dose-dependent manner. Melatonin treatment significantly downregulated the expression of lncRNA JPX in Saos-2, MG63 and U2OS cells. Overexpression of lncRNA JPX into OS cell lines elevated the cell viability and proliferation, which was accompanied by the increased metastasis. We also found that melatonin inhibited the OS progression by suppressing the expression of lncRNA JPX via regulating the Wnt/β-catenin pathway. Our results suggested that melatonin inhibited the biological functions of OS cells by repressing the expression of lncRNA JPX through regulating the Wnt/β-catenin signalling pathway, which indicated that melatonin might be applied as a potentially useful and effective natural agent in the treatment of OS.  相似文献   
26.
《Cell》2021,184(25):6138-6156.e28
  1. Download : Download high-res image (220KB)
  2. Download : Download full-size image
  相似文献   
27.
Propionic acid (PA) is an important building block chemical and finds a variety of applications in organic synthesis, food, feeding stuffs, perfume, paint and pharmaceutical industries. Presently, PA is mainly produced by petrochemical route. With the continuous increase in oil prices, public concern about environmental pollution, and the consumers’ desire for bio-based natural and green ingredients in foods and pharmaceuticals, PA production from propionibacteria has attracted considerable attention, and substantial progresses have been made on microbial PA production. However, production of PA by propionibacteria is facing challenges such as severe inhibition of end-products during cell growth and the formation of by-products (acetic acid and succinic acid). The integration of reverse metabolic engineering and systematic metabolic engineering provides an opportunity to significantly improve the acid tolerance of propionibacteria and reduce the formation of by-products, and makes it feasible to strengthen the commercial competition of biotechnological PA production from propionibacteria to be comparable to the petrochemical route.  相似文献   
28.
The ability to metabolically label proteins with 35S-methionine is critical for the analysis of protein synthesis and turnover. Despite the importance of this approach, however, efficient labeling of proteins in vivo is often limited by a low number of available methionine residues, or by deleterious side-effects associated with protein overexpression. To overcome these limitations, we have created a methionine-rich variant of the widely used HA tag, called HAM, for use with ectopically expressed proteins. Here we describe the development of a series of vectors, and corresponding antisera, for the expression and detection of HAM-tagged proteins in mammalian cells. We show that the HAM tag dramatically improves the sensitivity of 35S-methionine labeling, and permits the analysis of Myc oncoprotein turnover even when HAM-tagged Myc is expressed at levels comparable to that of the endogenous protein. Because of the improved sensitivity provided by the HAM tag, the vectors and antisera described here should be useful for the analysis of protein synthesis and destruction at physiological levels of protein expression.  相似文献   
29.
30.
Metabolism is recognized as an important driver of cancer progression and other complex diseases, but global metabolite profiling remains a challenge. Protein expression profiling is often a poor proxy since existing pathway enrichment models provide an incomplete mapping between the proteome and metabolism. To overcome these gaps, we introduce multiomic metabolic enrichment network analysis (MOMENTA), an integrative multiomic data analysis framework for more accurately deducing metabolic pathway changes from proteomics data alone in a gene set analysis context by leveraging protein interaction networks to extend annotated metabolic models. We apply MOMENTA to proteomic data from diverse cancer cell lines and human tumors to demonstrate its utility at revealing variation in metabolic pathway activity across cancer types, which we verify using independent metabolomics measurements. The novel metabolic networks we uncover in breast cancer and other tumors are linked to clinical outcomes, underscoring the pathophysiological relevance of the findings.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号